UNIVERSITATEA
Petru Maior

TIRGU MURES

=2

Scientific Bulletin of the ,,Petru Maior” University of Tirgu Mures

Vol. 12 (XXIX) no. 1, 2015

ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online). ISSN 2286-3184 (CD-ROM)

EXISTENCE OF POSITIVE SOLUTIONS FOR A FOURTH-ORDER
DIFFERENTIAL SYSTEM WITH VARIABLE COEFFICIENTS

Kovacs Béla
Institute of Mathematics, University of Miskolc,
3515 Egyetemvaros, Hungary

Bogdan Marcel, Béla Finta
“Petru Maior” University of Tirgu Mures
Nicolae lorga Street, no.1, 540088, Tirgu Mures, Romania

ABSTRACT

This paper investigates the existence of positive solutions for a fourth-order differen-
tial system using a fixed point theorem of cone expansion and compression type. The
two main results give sufficient conditions to insure at least one and at least two posi-

tive solutions, respectively.
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1 Introduction

It is well known that the bending of an elastic beam
can be described with fourth-order boundary value
problems. An elastic beam with its two ends sim-
ply supported, can be described by the fourth-order
boundary value problem

{u(4)(t) = Ft,u(t),u’(t)), 0<t<1

The existence of solutions for problem (1) was es-
tablished for example by Aftabizadeh [1], Gupta [4, 5],
Liu [6], Ma [7], Ma et. al. [8], Ma and Wang [9], Del
Pino and Manasevich [10], Yang [11] (see also the ref-
erences therein). All of those results are based on the
Leray-Schauder continuation method, topological de-
gree and the method of lower and upper solutions.

Recently, Wang and An [12] studied the existence
of positive solutions for the second-order boundary
value problem

—u" +Mu=up+ f(t,u), 0<t<1
- =puu, 0<t<1

u(0) =u(l) =0

©(0) = ¢(1) =0,

2)
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where A > —n2, u is a positive parameter, and
f(t,u) : [0,1] x [0, 00) — [0, 00) is continuous.

In this paper we discuss the existence of positive
solutions for the fourth-order boundary value problem

u® + A(t)
- =pu,0 <t <1

u(0) =u(l) =u”(0) =u"(1) =0

p(0) = (1) =0,

3)
where A, B € C[0,1] and p is a positive parameter.
The existence of the positive solution depends on
i.e. there exists a positive number ji, such that if 0 <
< [, the BVP (3) has a positive solution. For this,
we shall assume the following conditions throughout:

(Al) f(t,u,v) : [O, 1] X [Oa OO) X (700,0] — [Oa OO)
is continuous;

(AZ) b= infte[o’l] A(t) > —772, c= inftG[O,l] B(t) >
0,7 —br? —c>0,where b,c € R, b= —)\; —

(©2015 Published by “Petru Maior” University Press. This
is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

"— B(t)u = pu+ f(t,u,u’), 0<t<1



)\2<27T27c:—)\1>\220,and)\1 >02> Xy >
2

—Te.

Assumption (A2) involves a two-parameter nonres-
onance condition.

In fact as we will see below one could consider in
Section 2 and 3 that f (¢, u,v) = g(t) - h(¢, u,v) with
h(t,u,v) :[0,1] x [0,00) x (—00,0] — [0, c0) con-
tinuous and g € C([0, 1], R, ) provided

1 1
/ / G1(1,7) Ga(1,8) g(s) dsdr < +00;
o Jo

here G1, G5 are as defined in Section 2.

2 Preliminaries

Let Y C[0,1] and Y,
{ueY|u(t)>0,t€[0,1]}. It is well known
that Y is a Banach space equipped with the usual
Cebisev norm |[ullo = sup,¢jo 17 [u(t)]. Let us denote
by || - ||2 the norm

[ullz = max {[[ullo, [lu"[lo} -

It is easy to show that C2[0, 1] is complete with the
norm | - [z and [Juf|2 < [Jullo + [[u”[lo < 2]|ull2-

Let us set X = C2[0,1] = {u € C?[0,1] : u(0)
u(1) = 0}. For given A > 0, denote the norm || - ||
by [[ullx = supyegoy {[u”(1)] + Au(®)l}, u € X. I
can be shown that (X, || - ||») and (X, || - ||2) are both
Banach spaces ([2]).

We need the following ten lemmas.

Lemma 1. ([2]) Vu € X, |Jullo < ||u”]o-
Lemma 2. ([2]) YVu € X one has
(L4 N7 ullx < flulle < [lufa-

Suppose that G;(¢,s), i € {1,2,3} is the Green
function associated to

—u" 4+ XNu=0, u0)=u(l)=0.
V| Ail, then G;(t, s), i € {1,2,3} can be

Let w;
expressed as

(i) when \; > 0, G;(t,s) =

sinh w;t - sinh w; (1 — s)

: , 0<t<s<1
. wj sinh w;
smhwis's.mhwi(l_t), 0<s<t< 1,
wj sinh w;
(i) when A\; =0,
1 — 0<t<s<1
Gi(t,s) — K(t,S) = ( s), ST s
S ].*t)v Ogsﬁt_
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(iii)) when —7? < i < 0, Gi(t78) =
sinw;t - sinw; (1 — s) 0<t<s<l
, <s
w; sin w;
sinw;s - sinw; (1 — ¢t) 0<s<t<l
, <s

w; sin w;

Lemma 3. G,(t,s), i € {1,2,3} has the following
properties:

() GL(tv S) > Oth7 s € (Oa l)a
(i) G;(t,s) < C;-Gyi(s,s),Vt, s €[0,1];
(iii) Gz(t, S) > 51G7,(t7 t)GZ(& S),Vt, ENS [0, ].],

where C; = 1,0; = =, if A\i > 0; C; = 1,0; = 1,
ifA\=0;C; = ﬁ,éi = w;sinw;, if —m2 < \; <
0.

For h € Y, let us consider the following linear
boundary value problem:

—u"" 4+ XNu = h(t), u(0)=u(l)=0.

Then the solution of (4) can be expressed as

1

u(t):/ Gi(t,s)h(s)ds, i€ {1,2}. (5)
0
We now define a mapping 7; : C[0,1] — C]0,1]
by
1

(T;h)(t) :/ Gi(t,s)h(s)ds, i € {1,2}. (6)

0

Using Lemma 3 we have

Kmmwlamwws

1
< Cz‘||hHo/ Gi(s,s)ds < CiDi||hllo = M;| R0,
0

1
G;(s,s)ds. Thus

where Mz = CZDZ, Dz
0
| T:R]l0 < M;||h||o, and therefore

T3] < M;,ie{1,2}. @)

Lemma 4. ([12]) Let E be a real Banach space and
let P C E be a cone in E. Assume that 21, Qo are
open subsets of E with § € Q, Q1 C Qo, and let
Q:PnNn (ﬁg \ Ql) — P be a completely continuous
operator such that either

(1) [|Qull < [lull, w € PN O and ||Qull = |uf,
u € PNOoQy; or

(i) 1Qull = |Jull, w € P10y and ||Qul| < ||ull,
u € PNoQs.

Then, Q has a fixed point in P N (ﬁg\Ql) .



Lemma 5. Let f, : (0,1) — R be a sequence of a
continuously differentiable functions. If

i) Jim f(z) = f(z) on

it) lim f/(z)
n—oo
uniformly on (0, 1),

(0,1);

= p(x), where the convergence is

then, f is continuously differentiable on (0, 1), and for
all x € (0,1) one has

lim f/(z) =

n—oQ

f'(z).

For h € Y, consider the following linear boundary
value problem:

u® 4 —cu=nh(t), 0<t<1 ®
u(0) = u(1) = w’(0) = u"(1) =0,
where b, c satisfy the assumption
™ —br?—c>0 9)

and let I' = 7 — br? — c. The inequality (9) follows
immediately from the fact that I' = 7% — bn? — c is the
first eigenvalue of the problem u® + bu” — cu = Au,
u(0) = u(l) = «”(0) = (1) = 0 and ¢1(¢) =
sin 7t is the first eigenfunction, i.e. I' > 0.

Let us consider the polynomial P(\) = A2 +b)\—c,
where b < 272, ¢ > 0. It is easy to see that P has two
real roots A\, Ao = —bdvbiide V2b2+46, with Ay > 0> Ay >
—n2. In this case, (8) satisfies the following decompo-
sition form:

u® + b — cu
d? d?
S (Y
< az " 1)( dt?
It is obvious that b = —X\; — Ay < 272, ¢ =

—A1 A > 0.
Now, since

(10)
+>\2)u,0<t< 1.

u™® + by’ — cu
d? d?
() (-
d? d?
(~dm ) (- i

the solution of the boundary value problem (8) can be
expressed by

+ )\2)

+ )\1>u = h(t),

u(t) :/o /0 G1(t,v)Ga(v, s)h(s) dsdv, t € [0,1].

(1)

Thus, for every given h € Y, the boundary value
problem (8) has a unique solution u € C*4(0,1) given

by (11).
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We now define a mapping 7' : C[0, 1] — C[0, 1] by
Th)(t) = (TTih)(t) =

//Glthw;s) (s) ds dv,

From (5) and (6) one can obtain the following re-
sult.

€ [0,1].
(12)

Lemma 6. ([2]) The operator

= (X1 M)

is linear completely continuous, and ||T|| < Ds.

T:CI0,1]

Throughout this article we denote by Th = u the
unique solution of the linear boundary value problem

(8).
The boundary value problem
¢(0) = ¢(1) =0,

can be solved by using the Green’s function, namely,

:,u/o K(t,s)u(s)ds,

Thus, inserting (13) into the first equation of (3),
we have

—¢" = pu,

O<t<1. (13)

<4>+B() ' — A(t)u
/Kts s)ds + f(t,u,u”)  (14)
)=u"(0) =v"(1) =0.

Now we consider the existence of a positive solu-
tion of (14). The function u € C*(0,1) N C?[0,1] is
a positive solution of (14), if u > 0, ¢ € [0,1], and
u # 0.

Let us consider the following linear boundary value
problem:

u® + bu — cu
= pu(t /Kts s)ds+ f(t,u,u”)  (15)
u(0) = =u"(0) =4"(1) =0.

Then, the solution of (15) can be expressed as

ut)u/l/le(t,T)Gl(TaS)u(S)
/ K(s,v)

+/0 /0 Gao(t,7) G1(T,8) f(s,u(s),u”(s)) dsdr

v)dvdsdr

and its second-order derivative can be expressed by



)\QU

u//( )

/Glts
/st

_/0 Gi1(t,s) f(s,u(s),u”(s))ds.

v)dvds

Let us set the cone in C?[0, 1]

{u602 1)t

and

P="Pn{ueC?0,1]: u(t) > oy|ulo,

1 3
(1) 2 ool ont € [ } 1

4" 4
where
31 .
o1=—(1—-L) min_ Gy(t,t),
C1 te[L,2]
01
o9 = min G4(t,t), and

CnCh te[1.3]

1 1
Cm: 3 .
maX{11: 1L1}

It is easy to check that P is a cone in C2[0, 1] as
well.

For R > 0, write
Br = {u € C?0,1] : ||lull2 < R}.

Consider the following boundary value problem
(see [2]):

u® +bu" — ¢

For any u € X let

Gu = — (A(t) — b)u" + (B(t) — c) u.

The operator G : X — Y is linear. By Lemmas 2
and 3,Vu € X, t € [0,1], we have

[(Gu) ()] < [B(t) + A(t) = (b+ )] [[ull2
< Klullz < Klfullx,.
where K = tréa[g)l(] [B(t) + A(t) — (b+¢)] .

IGullo < K|ul/x,, and so |G| < K. Also u €
C?[0,1] N C*(0,1) is a solution of (16) iff u € X
satisfies u = T'(Gu + h), i.e

Hence

weX, (I-TG)u=Th. (17)
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The operator I — T'G maps X into X. From ||T'|| <
Dy together with ||G|| < K and condition L :=
DyK < 1, and applying the operator spectral theo-
rem, we find that (I —T'G) ™! exists and it is bounded.

Let H = (I — TG)~'T. Then (17) is equivalent to
u = Hh. By the Neumann expansion formula, H can
be expressed by

H = (I+TG+...+
= T+(TG)T+.. .+

(ré)"+...)T
(TG)"T +...(18)
The complete continuity of 7' with the continuity of
(I — TG)~? guarantees that the operator H : Y — X
is completely continuous.
Now Vh € Y, ,letu = Th, thenu € X NY,, and
u” < 0. Thus we have

(Gu)(t) = — (B(t) — c)u” + (A(t) —b)u > 0,
t €10,1].
Hence
VheY,, (GTh)(t)>0, tel0,1] 19)

and so (T'G) (Th) (t) =T (GTh) (t) > 0,t € [0,1].
It is easy to see ([2]) that the following inequalities
hold, Vh € Y

1

—(Th)(t) 2

— (HR)(t) 2

(Th)(t), t €10,1],

and )
H < ——||Thllo.
|Hhllo < —— Tl

If we now introduce the following notation

),

then, from (16), using (10), we have

d2
( p7e] + M >V1

d2

Vi) = ( a2

= Gu+ h(t) (20)

So, the following boundary value problem

{_u”(t) =+ )\gu(t) = m(t)a

w(0) =u(1)=0

can be solved by

1
U(t) = (TQVl)(t) = A GQ(T,S)Vl(S) ds (21)

Moreover, from (20) using (21) we obtain

d2
( — ot )\1)1/1 =GTVi +h(t)  (22)



V1(0) =0

From equation (22), we have

Vi(1) = 0. 23)

Vi(t) = T1 (GTu Vi + h(t)).

On the other hand, V; € C[0,1] N C%(0,1)
is a solution of (22-23) iff Vi(¢) satisfies Vi =
T, (GToVi + h) ,ie

(I — T\GTy)Vi = Tih. (24)

From ||T1|| < M, ||T2]] < M, together with
IG]| < K and condition M; MK < 1, applying the
operator spectra theorem, we have that (I —T,GT,)~*
exists and it is bounded. Let L1 = M, M5 K.

Let Hy = (I — T1GTy)~'T}. Then, (24) is equiv-
alent to V7 = H;h. By the Neumann expansion for-
mula, H; can be expressed by

= (I + T\GTy + (I1GT»)*
+...+(IGT)" +...)T1
=T + (T\GT>)Ty + (1 GTy)*T
+ . 4+ (TVGT)"Ty + ...

H,y

(25)

The complete continuity of 7 with the continuity of
(I — T'GT,)~! yields that the operator Hy : Y —
C?[0,1] is completely continuous.

By (25) we have that V h € Y, |

(Tyh) () + (1 GT2)Tih) (t)

+ ((GTR)*Tuh) (t)

+ ...+ (GT2)"T1h) () + ...
= (Tyh)(t), t€10,1],

(H1h)(t) =

and so Hy : Yy — Y, N C?[0,1].
On the other hand, we have thatV h € Y,

(Hih)(t) < (Th)(t) + 1L GT3|[(Tah)(1)

+ | TV GT) |2 (Tyh) (8) + . .. +

I TAGT||™ (TLh)(t) + - ..
<O4Li+.. . LT +..)
(Ti)(®) = = (Th) )

So, the following inequalities hold:

1
(Hi)(t) < ——ITihllo, t € 0,1]
— 41

and
| Hyhllo <

1
T1h|o.
—[1Tiklo

Hence

1
1-1L,

(Tuh)(t) > (Hh)(t) > (Tih)(1), ¢ € [0,1].
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For any u € Y, N C?[0, 1], let
s)ds + f(t,u,u”).

= pu(t / K(t,s)
(26)

From (A1), we have that F' : Y, N C?[0,1] — Y,
is continuous. It is easy to see that u € C?[0,1] N
C*(0,1) being a positive solution of (14) is equivalent
to u € Y, being a nonzero solution of

u = HFu. 27

Let @ = HF. Obviously, Q : Yy N C?[0,1] —
Y, NC?[0, 1] is completely continuous. We next show
that the operator () has a nonzero fixed point in Y N
C?0,1].

From (12) and (26) we also have

TFu(t) = ToT, <,Lu(s) /O 1 K(s,v) u(v) dv

f(s,u(s),u"(s)))

—u/ / Go(t,7) G (7, 5) u(s)
/st

+/O /0 Go(t,7) G1(7, 8) f(s,u(s),u”(s)) dsdr

f o

v)dvdsdr—

(28)

v)dvdsdr

and hence

AT Fu(t)

/st

/0 Gi(t,s) f(s,u(s),u”(s))dsdr.

So, from (18) and (28), we have
(Qu)(t) = (HFu)(t) = (TFu)(t) + ( (TG) TFu)( )
+ ...+ ((TG)"TFu)(t) + .

(TFu)"(t) =

(29)
Lemma 7. Let uw € P. Then, the following relations
hold:

o1
(@) (Qu)(t) = &-(1 -

1
[0,1};

L) - Gi(t,1)[[Qullo, for t €

" 6
~(@Qu)'() > &~
[0,1].

v 1C1 ‘Gr(t,D[1(Qu)"|lo, for t

Proof. From Lemma 3 it is easy to see that

1 c, [t
- (TFu)(t) < 1_L/0

/0 G1(7,7)Ga (1, s)Fu(s) dsdr, t € [0,1]

Qu(t) <



and so

<
Qulo < -2

Hence

Qu(t) > (TFu)(t) >61G1tt//
G ( )GQ(T s)Fu(s)

Similarly, it is easy to see that

)dsdtn (30)

—(Qu)"(t) > & )(Qu)"lo-  (B1)

Indeed, using (18) H can be expressed by
Hh=(I+TG + (TG)?
+...+T&"+...)Th
=Th+TGTh+ (TG)*Th
+...+(TG"Th+ ...
=T(Ih+ GTh+ (GT)*h
+...+(GT)"h+...).

If we differentiate the right hand side of (18) with
the help of (32), Vh € Y, we have the following:

(32)

T'(Ih+ GTh + (GT)?h
+...+(GD)"h+...)
=T'h+T'G(Th+ (TG)Th
4.+ (TA)"Th+...)
<T'h+TG(Th+|TG|Th
...+ |TC|"Th+...)
<Th+T'GA+L+...+L"+...
1

/ [
_Th+1_L(TG)

)Th

Then the series

T'h+T'GTh+T'G(TG)Th+ ...+
T'G(TG)"Th+ ...
uniformly converges on (0, 1).

Using Lemma 5, if we differentiate both sides of
(18), we get

(HR) =T'h+T'GTh+T' G(TG)Th (33)
+...+T'GTG)"Th+...
Similarly, using Lemma 5 it is also true that
(HR)" =T"h +T"GTh+ T"G(TG)Th (34)

+...+T'G(TG)"Th + ...,
because the series

T'h+T"'"GTh+T'G(TG)Th+ ...+
T"G(TG)"Th + ...

(1, 7)Ga(T, 8)Fu(s) dsdr.
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also uniformly converges on (0, 1). If we differentiate
both sides of (33), we find equation (34).

Finally, we differentiate twice both sides of equa-
tion (12) with respect to ¢ in order to find 7"

/Glts ds

(ThY"(£) = Ao (Th)(

(35)
= X(Th)(t) — (Tah)(t), t € [0,1].
Using (34) and (35) we obtain
(HR)"(t) = X2 (HR)(t) — (H1h)(t)

with Hh and H;h from (18) and (25), respectively.
Let h = F'(u), then we obtain

(Qu)"(t) = (HF(u))" (t)

The proof of (31) is similar to the proof of (30).
Similarly,

—(Qu)"(t) = (= Az)(HFU)( )+
(—X2) (TFU)()

_(=29)
T 1-1L
1

(H1Fu)(t)

IN

1-

1_L1/G1tsFu )ds

<0 (—A2 / / G1(7,7)Ga(7,5)

1— 1,

+

Fu(s)dsdr —|—/0 G1(s, s)Fu(s) ds) , t€10,1]

and so
1,1
I@u'lo < i (<30 [ [ Grrr)Gatr)
Fu(s)dsdr + /1 G1(s, s)Fu(s) ds) .
0

Hence
—(Qu)"(t) >
> 01G1(t,t) ((—Az)

(=) (TFu)(t) + (T1 Fu)(t)

/ 1 / G (r )Gl o)

Fu(s) deT+/O G1(s, s)Fu(s) ds)
61G1(t t)

1(@Qu)"llo-

Throughout this paper, we assume additionally that
the function f (¢, u,v) satisfies

[t u,v) < f1(2) f2(lul + |v]),
te(0,1), ueR,veR_,

(H1)

= Ao (HF (u))(t)=(H1 F(u))(t)-

(Th Flu)(t)

1(t, 7)Ga(T, s)Fu(s) dsdr



where fl € C([O7 1}7R+) ) f2 € C(RJrvRJr) :
Let us introduce the following notations

1 41
D, = / / Gi(r,7) K(1,s)dsdr,
o Jo

D, :/0 Gi(s,s) f1(s) ds

1,1 p1
D3 = / / / G1(1,7)Ga(1, 8)K (s,v) dvdsdr,
o Jo Jo

Dy = /1 /1 G1(7,7)Ga(T, s) f1(s) dsdr,

WA

Lemma 8. Suppose that (H1) applies. Then, for all
u € C?[0,1] such that u(0) = u(1) = 0, u > 0, and
u” < 0, the following hold

7)G1(T,s) dsdr.

(TFu)(t) < pDy[ul|§ + Dy Es?p)fz(IU( s)|
+[u"(s)]), t€(0,1),
and
—(TFw)"(t) < pDyull§ + Dy sup fo(|u(s)|
s€(0,1)
+ [u”(s)]), t € (0,1).

Proof. Itis easy to see that D3 < Dq and Dy < Ds.
By Lemma 1 and (H1) we have

TFu(t) gu/l/l/lK(T,T)

K(1,8)K(s,v) dvdsdr]|ul|?

//KTT (1,8) fi(s)dsdr

sup fo([u(s)| + [u”(s)])

s€(0,1)
< Dy |[ull§ + D> Sup f2(|u( )+ 1" (),

s€(0,
and similarly we also have
1 1
~@F' O <u | [ K Kirs)dsarlul
0
/ K(s,s) fi(s)dsdr sup fo(lu(s)| + |u"(s)])
s€(0,1)

< uDy[[ull§ + D2 sup fa(Ju(s)] + [u”(s)])-
se(0,

Lemma 9. Q(P) C Pand Q : P — P is completely
COntinuous.
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Proof. Let u € P, then we define the mapping ) :
P — C?[0,1] by (29). Then, for any u € P, itis clear

that
/ Gl t S

v)dvdsdr

(TFu)"(t) = \oTFu(t)

/st

—/ Gi(t,s) f(s,u(s),u"(s))dsdr <0,
' (36)

because Ay < 0. So, using (34) and (36), we have

(Qu)"(t) = (HF(u))" (t)

= A (HF(u))(t) — (HiF(u))(t) < 0.

By Lemma 7,
(@u)(1) = 201~ )G (5 1)|Qullg
1

1 3
> 01| Qullo, t€ [}

44
and
1 5 t t "
QU0 > G Galt. Qo
> callQulo, t€ 3.5

Hence Q(P) C P.

Let V' C P be a bounded set. Then there exists
d > 0, such that sup{||ull2 : © € V} =d.

First we prove Q(V') is bounded. Since ||ul|2
maxx {[[ulo, [lu"[lo} » we have [u(t)] + |u"(¢)
llullo + lJu"llo < 2d, for all t € [0,1]. Let My
sup{ fo(w) : w € [0,2d]}. Now, from Lemma 3 we
have for any v € V and t € [0, 1] that

=l [ [ K K ute

/st dUdeT+//KtT

K(7,5) f(s,u(s),u"(s)) dsdr |

< uD1|ullg + Do btlp)f2(|u( s)|
se(0

A I

|TFu(t

+ |u”(s)|) < pDyd?® + MyDs.
(37

Using (37), we obtain (T Fu)||o < uD1d?+MgDs
and

1 1
|HFully < - ITFully < = (uD1d*+MyD).

L

We have a similar type of inequality for |(Tu)” (¢)|
and || (HFu)" |o.



Therefore (V) is bounded.

Next we prove that Q(V') is equicontinuous. Now
from Lemma 4 we have forany v € V and any ¢4, 15 €
[0, 1] that

(TFu)(t) — (TFu)(ts) |<M/ / K (t1,7)

— K(to, )| K(T,5)u /st v)dvdsdr
/ / |K(t1,7) — K(to, 7)|K(T,8)
u”(s))dsdr
<u/ / / |K(t1,7) — K(t2,7)|
K(1,8) K(s,v) dvds dr||ul|?
/ / K (t.7) — K(t2.7)|K (7. ) fa(s) fo([u(s)]
+ [u”(s)|) ds dr

§u|t1—t2|/ / K(s,5) K(s,v)dvds ||ul|?
0o Jo

1
+ Mylty 7t2|/ K(s,s) f1(s)ds
0

< (uD1d* + MyDs)|t; — tol.
(38)

Using (18), we have

[(Hh)(t1) = (Hh)(t2)| =| (Th)(t1) — (Th)(t2)
(TG )( 1) = (TGTh)(t2) + ((TG)*Th) (t1)
— ((TG)*Th)(t2) + ...+ (TG)"Th)(t1)

- (TG ”Th) 2) + ... [<[(Th)(t)

—(Th )(tz)l + |(TGTh)(t1) (TGTh)(t2)|
+|((TG)*Th) (t1) — (TG)*Th)(t2)| + ... +
(T G)"Th)( 1) — ((TG)"Th) ta)| +...=
(Th)(t1) = (Th)(t2)] + (TG)(Th(t1) — Th(ts))]
(TG)*(Th(t1) — Th(t2))| + ...+ [(TG)" (Th(t)
~Th(t2))| + ... <|(Th)(t1) — (Th)(t2)]

+ TG - [Th(t1) = Th(tz)| + |TG|* - |Th(t1)
—Th(t2)| + ...+ |TG||™ - |Th(t:)
—Th(te)|+...<(Q+L+...+L"+

TR )
— (TR)(12)] = T (TH)(0) — (TR)(E2)]

(H
+

Let h(t) = Fu(t) = pu(t fo
f(t,u,u’"). So, by (38) we have

[(Qu)(t1) — (Qu)(t2)| = [(HFu)(t1) —

< (T Fu)(n) -

< — (/,LDld2 + MdD3)|t1 — t2|

s)ds +

(HFu)(ts)|
(TFu)(ts)|

[t
h

H
h
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We have a similar type of inequality for
[(Qu)"(t1) = (Qu)"(t2)].

Therefore (V) is equicontinuous.

Next we prove that 7' is continuous. Suppose
Unp,u € P and |lu, — ul]z2 — 0 which implies
that u,(t) — wu(t), ul'(t) — u’(t umformly on

n )
[0,1]. Similarly, for f(t,u,v) = g(t) - h(t,u,v),

h(t, un(t),ur(t)) — h(t,u(t),u”(t)) umformly on

[0, 1]. The assertion follows from the estimate

[(Hh2)(t) = (Hha)(t)| =| (The)(t) — (Th1)(t)

+ (TGThy)(t) — (TGTh)(t) + ((TG)*Thy)(t)

— ((TG*Th1)(t) + ...+ ((TG)"Ths)(t)

(TG Thy) () + ... |< [(Tha)(®)

— (Thy) ()| + [(TGThs) () — (TGTha)(t)|

+ ;( (TG)*Ths)(t) — ((TG)*Thy)(t)|

+[((TG)"The) (t) — (TG)"Tha)(t)] +

|(Th2) (t) = (Tha) ()] + [(TG)(Tha(t) —
2

|< G)* (Tha(t) — Th (1)
o+ [(TG)" (Tha(t) — Thi(t)] + ...
< I(Thz) (t) = (Thy) @) + TGl - [Tha(t)
— Thy(t)| + |TG||? - |Tha(t) — Thy(t)| + ...+
|TG||™ - |Thy(t) — Thy(t)] + ...
<SA+L+...+L"+...) |Tha(t)

=L That) - Thi(0))

1—L

Thl( )|

— Thy(t)]

(39)

Let hi(t) = Fuy(t) and ha(t) = Fu(t). So, by
(39), we have

[(Qun)(t) — (Qu)(t)| = [(HFu,)(t) —
< % T Fun(t) = TFu(t)]

//KtT (1,8) |un(s) — u(s)|

/ K (5,) [un(v) — u()| dv ds dr

//Km (r,5) 19(5)] 1A(s, un(s),

h(t,u(s),u”(s))|ds dr,

(HFu)(t)|

UZ(S))

and the similar estimate for |(Qu,)"(t) — (Qu)" (¢)|
by an application of the standard theorem on the con-
vergence of integrals. Obviously, @ : P — P is con-
tinuous.

The Ascoli-Arzela theorem guarantees that @ :
P — P is completely continuous. W

Lemma 10. [f u(0) = u(1) = 0 and u € C?|0,1],
then ||ullo < [|u"lo, and so, ||ull2 = |[u"lo.

Proof. Since u(0) = wu(1), there exists o € (0,1)
such that u/(a) = 0, and so u/(t) = fat u'’(s) ds



t € [0,1). Hence [v/(t)] < [l[u"(s)|ds <
1

[o [u"(s)lds < [lu"llo, t € [0,1]. Thus [[u/[lo <
[ o Since u(0) = 0, we have u(t) = [ u/(s) ds,
t € [0,1], and so u(t)] < [y [u/(s)|ds < |u[lo.
Thus |lullo < [[u/llo < [lu”lo. Since [ull2
max {|[ullo, [[u"]lo} and [lullo < [[u”]lo, we obtain
that [|ull2 = [|u"|o.

Corollary 1. Let r > 0 and let w € 0B, N P. Then
l[ull2 = [Ju"llo = 7.
1

Let us denote by i = 4C,,C1 (1 + |X2|) Dy

3 Main results

In the following we prove two results, in Theorem
1 and Theorem 2, that assert the existence of positive
solutions.

Theorem 1. Suppose that (H1) applies.. Assume that
the following condition holds

(H2)
lim sup () =0,
w—0t w
and
liminf min inf M = 0.
[v]—=oo te[d,3] u€l0,400) |U|

If uw € (0,[i), then problem BVP (3) has at least
one positive solution.

Proof. Let us choose 0 < Cy < &, Then by (H2),
there exists 0 < r < 3 such that

Fallul +Jo]) < Cr(jul + [v]), 0 < Ju] + [v] < 2r.

Let w € 0B, N P, then by Corollary 1, |ju|s =
|[u"llo = 7 and w(0) = wu(l) = 0. Also since
lullo < Il llo we have [u(t)| < [lullo < r, |u" ()] <
lwllo = =, V& € [0,1], therefore 0 < |u(t)] +
[u’(t)] < 2r,Vt € [0,1].

Thus, by Lemma 2, (H1) and (H2), we have

1
—— (Tu)(t

1_1L{u01/Ol/ol/olGl(T,T)Gz(T,s)

1 1
2
K(s,v)dvdsd7'||u||0+01/0 /0 Gy(7,7)
Ga(7, ) f1(s) fo([u| + [u"]) dsdT}

Ch

L

(Qu)(t) <

IN

<

Cy

< /,LDg Cl 1 L

- 1-L
01 Cl
1-L 1-L
< uD1Cr Ch[|ul[§ + 2C1 Do [[oCrn C

[l + 2C1 Dal[u” o

< uDy [l + 2C1 Do [u” o

{nDsllulld + CrDa(llullo + l1u” o) }
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1 1 1
Jlllle < Zlul3 + lull

1
< Il +
1
< 5llull2, Yu€ 0B, NP, t € [0,1].
Consequently,

1
|Qullo < 5llulls, Vu€dB, NP 40)

Similarly we also have
—(Qu)"(t) = (=) (HFu)(t) + (H1Fu)(t),

hence
[(Qu)" ()] = [X2|[(HFw) ()| + |(H1 Fu)(t)]

1
TP 0]+ = (TP 1)

1 1 gl

<cutucinl [ [ [ Gimn)
Go(1,5) K (s,v) dvdsdr||ul|?

1 1
+ Gl / / G1 (7, 7)Ga (T, 5) fu(5) fol[u] + [u”]) dsdr

< A2

1 1
b uC / / Gy (7, 7) K (7,v) dvdr|[ul 2
0 0

e / G (r, 7) fa () (] + [u”]) dr}

< C1Cr{| MaluDs][ul§ + C1DalXa|([[ullo + [[w”[l0)

+ pDulull§ + C1Da(|[ullo + [[u”[lo)}

< CLCom{| MaluDr [|ull§ + CaDslXal[[w” o

+ puD|ul|§ + C1Ds2||u”||o}

< C1Cn(1+ o) Drpflufl? + C1Cr (1 + [A2]) DaCr2||u” o

1 1 1
< lullg + 3 1"llo = 5llulla, Yu € 8B, AP, ¢ €0,1].
Consequently,

1
(Qu)"|lo < §||u||2, Yu € 9B, N P. 41
Using (40) and (41) we have
1Qull2 < [Qullo+(Qu)"llo < [|ull2, Yu € 0B,NP.
~ 42)
Let us choose 0 < Cy < ﬁ. Then, by condition
(H2), there exists Ry > 0 such that

~ 1 3
F(tu,v) > Colol, Yu € R, Vjo| > Ry, t € {4,4] _

Let R > max{ZL r}. Let w € OB N P, ie.
(e
[lu”|lo = R. Thus we have

min _|u”(t)| > o||u”|jo = oR > R1, u € BgrNP.

te[4,3]



Then, by Lemma 1, (H1) and (H2), we have lu(t)] + |u”(¢)| < 1, Vt € [0, 1]. By condition (H4),
Yu € 0B, N Pandt € [0, 1], we have

(Qu)(é) > (Tu)(é) > M/; /j /; G <;’T> (Qu)(t) < L (Tu) t)

G1(T, s)u(s)K (s,v)u(v) dvdsdr

H S Hcl/ / / Gy(7,7)
/ / ( )Gl(T,s)f(s,u(s),u"(s))dsdT ST
Go(T,8)K (5,v) dvdsdr||ul| + %Cl
_62/ / G2<1,7)G1(7, s)|u(s)|dsdr 11
e / / G1(7,7)Ga(7,8) f1(s) f2(|u] + [u") dsdr
0 0
/ / Gz( >G1(T,s)dsd7'||u"||02|u”||0 1 9 0 Lol
< — s
< l_LC’1uD3\|u||O+4D2CICl/0 /0 G1(7,7)

1
Ga(1,8)f1(s) ds < ﬁcle 3

Bl

NI

| \/

u > |lu”|lo = ||u]l2, Yu € dBr N P. Lot
“”() Il =l 4 +1b- [ ] emnGatr fis) s < bl

Consequently,
+E/ / G1(7,7)Ga(T,8) f1(8) ds
1 " 2 1
lulls < 1 Qullo < [ Qulla. Vu € 9Bg 1 P < 3l + Jo = huld + 71l = 3l + 3 lull
. 1 1 1
Then, due to Lemma 4, by (42) and the above in- < 7||u||§ + ZHqu < 5““”27 Yu € 0B, NP, t €0,1].

equality we see that the problem (3) has at least one

positive solution. W Consequently, we get

Theorem 2. Suppose that (H1) applies. Assume that

the following conditions hold 1Qullo < %HU”Z, Yu € OB, N P. (44)
(H3) Similarly we also have
L. . [t u,v)
liminf min ——— = oo, —(Qu)"(t) = (=Xo)(HFu)(t) + (H Fu)(t),
it min, T (Qu)"(t) = (~Xo) (HFu)(t) + (Hy Fu)(t)

hen
and ence

Q)" ()] = [Xol[(HFu)(t)| + [(H1 Fu)(t)|

e )
s R S Y R < Pal = (TP)(D)] + 7= (T Fu) (1)
(H4) there exists 0 < o < = such that < Cm{uC’1|)\2\/ / / Gy(7,7)
o(1-1L) Go(,8) K (s,v) dvdsdr||u|?
su A )
we[(?l]fQ( w) < 4D>C1(1+ |Agl)
+|A2\cl/ / Gi(r.7)
If p € (0,1), then problem BVP(3) has at least two 0 Jo
positive solutions. Go(T, 5) f1(s) fa2([u] + |[u") dsdr

1 1
UG / / G (r, 7)K (7, v) dvdr]jul)2
0 0

We note for the argument below that Dy < Da,

o(1-L) 0 — 1 1
4D>C1(1+]A2]) S 4D2Cl’and'u_ 4D1C1(1+[A2])Crm < +Cl/ G (7, 7) fi(7) fo(Ju| + ‘UHDdT}
I S 0
iD,C1Cr 2

< Cr{nC1|A2| Dslfullg

Proof. By condition (H4) there exists 0 < o < % o(1—1L) 1
such that (43) is fulfilled. Let u € 9B, N P, by + |>‘2‘Cl 1Dy Ci(1+ a))
Corollary 1, |[u”]lo = o, u(0) = u(1) = 0. Also, Lo ! ?
since flullo < [u”|lo we have u(t) < [lullo < o, / / G (7, 7)Ga (7, ) o (s) dsdr
[W’(t)] < |lu'|lo = o, Vt € [0,1], therefore 0 < o Jo
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o(1- L) 1
4Dy Ci(1+ M)

+ pCy D [[ull§ + 2

1

/ Gi(7,7)f1(7)dr}

0

< CoupCr D1 (1 + [Ao))[fulf
1 1

+ (14| 2]) ———
4( | 2‘)(1+|)\2|)

< CrupCr D1 (1 + [A2|)[fulf

1
—(1
+4( +1A2])

CmCro(1— L)

1
—C
(1+[A2])

A

1 1 1 1
< Zlhulld + o= 1l + 5 lull

4

1 1
< Zlull3 + Flelz < 5 lull,

Yu € OB, NP, te0,1].
Consequently,

I(Qu)"llo <

Using (44) and (45) we have

1
3 llull2, YuedB, 0 P. (45)

1Qull> < [1Qullo+II(Qu)"llo < llullz, Yu € dB,NP.

(46)
Let us choose 0 < ¢c3 < ﬁ. Then, by condition

(H3), there exists 0 < r < p such that

F(t,u,v) > es(|ul + v]), Yu € [0,7]

13
v 0 t -, —=1.
plepl ve 3]

Let u € 9B, N P, by Corollary 1, ||[u"]lq = 7,
u(0) = u(1) = 0. Also, since ||ullp < ||u”|lo we have

0 <u(t) < ullo <
0< [W"@®)] < u”llo = llullz =,
YuedB.NP.

Also we have

min |u”(t)] > o||u”||o = or, Yu € OB, N P.
1 3

te[z,z

The estimate for (T°u)(3) is similar to that in the proof
of Theorem 1, i.e. from Lemma 1 and (H1) we have

woft) oo (B)ef [ ol

> Gi(r,s)(|u(s)| + [u”(s)]) dsdT > c30

i 1 1
[ [ an(br) ey asietuto = 1
1 1

Thus

1
(Qu) <2> > [[u”]lo = |Jull2, Yu € B, N P.
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Consequently,
[ulls < [|Qullo < [|[Qull2, Yu € 0B, N P.

Finally we show that for sufficiently large R > %
it holds

[Qullz > |lull2, Yu € OBrN P.

To see this we choose 0 < ¢ < — —5-- Due to con-
dition (H4), there exists Ry > 0 such that

13
flt,u,v) > calv|, Vu € Ry, Viv| > Ry, t € [474} )

Let R > max{%t 1} Letu € 9BrNP, by Corol-
lary 1, ||u”|lo = R. Thus we have

min |u"| > o||u"|lo = oR > Ry, Yu € 9Br N P.

474

Then, by Lemma 1, (H1

(Qu)(;) > (m)(é) > ¢ / / GQG’T)
Gl@ﬁs)u"@ﬂd&#'2<aajéij£265<;,7>

Gi(r,8) dsdr|u”]lo > llu" o

) and (H4), we have

)
(Qu)( ) > |lu"|lo = ||ull2, Yu € dBr N P.

Consequently,
ull2 < |Qullo < [[Qull2, Yu € 0Br N P.

Then by Lemma 4, we know that ) has at least two
fixed points in (B\B,) N P and (B,\B,) N P, i.e.
problem (3) has at least two positive solutions. N

References

[1] Aftabizadeh, A.R. (1986), Existence and unique-
ness theorems for fourth-order boundary prob-
lems, J. Math. Analysis Appl., vol. 116, vol. 415-
426.

[2] Chai, G. (2007), Existence of positive solutions
for fourth-order boundary problem with variable

parametres, Nonl. Analysis, vol. 66, pp. 870-880.

[3] D. Guo, V. Lakshmikantham, Nonlinear Problems
in Abstract Cones, Academic press, New York,

1988.

[4] Gupta, C.P. (1988), Existence and uniqueness the-
orems for a bending of an elastic beam equation,

Appl. Analysis, vol. 26, pp. 289-304.



[5] Gupta, C.P. (1990), Existence and uniqueness
results for some fourth order fully quasilinear
boundary value problem, Appl. Analysis, vol. 36,
pp- 169-175.

Liu, B. (2004), Positive solutions of fourth-order
two point boundary value problem, Appl. Math.
Comput., vol. 148, pp. 407-420.

Ma, R. (1999), Positive solutions of fourth-order
two point boundary value problems, Ann. Differ-
ential Equations, vol. 15, pp. 305-313.

Ma, R., Zhang, J., Fu, S. (1997), The method
of lower and upper solutions for fourth-order two
point boundary value problems, J. Math. Analysis
Appl., vol. 215, pp. 415-422.

59

[9] Ma, R., Wang, H. (1995), On the existence of pos-
itive solutions of fourth-order ordinary differential
equations, Appl. Analysis, vol. 59, pp. 225-231.

[10] Del Pino, M.A., Manasevich, R.F. (1991), Ex-
istence for fourth-order boundary problem under
a two-parameter nonresonance condition, Proc.
Amer. Math. Soc., vol. 112, pp. 81-86.

[11] Yang, Y. (1988), Fourth-order two-point bound-
ary value problems, Proc. Amer. Math. Soc., vol.
104, pp. 175-180.

[12] Wang, F., An, Y. (2011), Positive solutions for a
second-order differential systems, J. Math. Analy-
sis Appl., vol. 373, pp. 370-375.





