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ABSTRACT

This paper investigates the existence of positive solutions for a fourth-order differen-
tial system using a fixed point theorem of cone expansion and compression type. The
two main results give sufficient conditions to insure at least one and at least two posi-
tive solutions, respectively.
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1 Introduction

It is well known that the bending of an elastic beam
can be described with fourth-order boundary value
problems. An elastic beam with its two ends sim-
ply supported, can be described by the fourth-order
boundary value problem{

u(4)(t) = f
(
t, u(t), u′′(t)

)
, 0 < t < 1

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(1)

The existence of solutions for problem (1) was es-
tablished for example by Aftabizadeh [1], Gupta [4, 5],
Liu [6], Ma [7], Ma et. al. [8], Ma and Wang [9], Del
Pino and Manasevich [10], Yang [11] (see also the ref-
erences therein). All of those results are based on the
Leray-Schauder continuation method, topological de-
gree and the method of lower and upper solutions.

Recently, Wang and An [12] studied the existence
of positive solutions for the second-order boundary
value problem

−u′′ + λu = uφ+ f(t, u), 0 < t < 1

−φ′′ = µu, 0 < t < 1

u(0) = u(1) = 0

φ(0) = φ(1) = 0,

(2)

where λ > −π2, µ is a positive parameter, and
f(t, u) : [0, 1]× [0,∞) → [0,∞) is continuous.

In this paper we discuss the existence of positive
solutions for the fourth-order boundary value problem
u(4) +A(t)u′′ −B(t)u = φu+ f(t, u, u′′), 0 < t < 1

−φ′′ = µu, 0 < t < 1

u(0) = u(1) = u′′(0) = u′′(1) = 0

φ(0) = φ(1) = 0,
(3)

where A,B ∈ C[0, 1] and µ is a positive parameter.
The existence of the positive solution depends on µ,
i.e. there exists a positive number µ̄, such that if 0 <
µ < µ̄, the BVP (3) has a positive solution. For this,
we shall assume the following conditions throughout:

(A1) f(t, u, v) : [0, 1]× [0,∞)× (−∞, 0] −→ [0,∞)
is continuous;

(A2) b = inft∈[0,1] A(t) > −π2, c = inft∈[0,1] B(t) >
0, π4 − bπ2 − c > 0, where b, c ∈ R, b = −λ1 −
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λ2 < 2π2, c = −λ1λ2 ≥ 0, and λ1 ≥ 0 ≥ λ2 >
−π2.

Assumption (A2) involves a two-parameter nonres-
onance condition.

In fact as we will see below one could consider in
Section 2 and 3 that f(t, u, v) = g(t) · h(t, u, v) with
h(t, u, v) : [0, 1]× [0,∞)× (−∞, 0] −→ [0,∞) con-
tinuous and g ∈ C([0, 1],R+) provided

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s) g(s) ds dτ < +∞;

here G1, G2 are as defined in Section 2.

2 Preliminaries

Let Y = C[0, 1] and Y+ =
{u ∈ Y |u(t) ≥ 0, t ∈ [0, 1]} . It is well known
that Y is a Banach space equipped with the usual
Cebîşev norm ∥u∥0 = supt∈[0,1] |u(t)|. Let us denote
by ∥ · ∥2 the norm

∥u∥2 = max {∥u∥0, ∥u′′∥0} .
It is easy to show that C2[0, 1] is complete with the

norm ∥ · ∥2 and ∥u∥2 ≤ ∥u∥0 + ∥u′′∥0 ≤ 2∥u∥2.
Let us set X = C2

0 [0, 1] = {u ∈ C2[0, 1] : u(0) =
u(1) = 0}. For given λ ≥ 0, denote the norm ∥ · ∥λ
by ∥u∥λ = supt∈[0,1]{

∣∣u′′(t)
∣∣ + λ|u(t)|}, u ∈ X. It

can be shown that (X, ∥ · ∥λ) and (X, ∥ · ∥2) are both
Banach spaces ([2]).

We need the following ten lemmas.

Lemma 1. ([2]) ∀u ∈ X, ∥u∥0 ≤ ∥u′′∥0.

Lemma 2. ([2]) ∀u ∈ X one has

(1 + λ)−1∥u∥λ ≤ ∥u∥2 ≤ ∥u∥λ.

Suppose that Gi(t, s), i ∈ {1, 2, 3} is the Green
function associated to

−u′′ + λiu = 0, u(0) = u(1) = 0.

Let ωi =
√
|λi|, then Gi(t, s), i ∈ {1, 2, 3} can be

expressed as

(i) when λi > 0, Gi(t, s) =
sinhωit · sinhωi(1− s)

ωi sinhωi
, 0 ≤ t ≤ s ≤ 1

sinhωis · sinhωi(1− t)

ωi sinhωi
, 0 ≤ s ≤ t ≤ 1;

(ii) when λi = 0,

Gi(t, s) = K(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1

s(1− t), 0 ≤ s ≤ t ≤ 1;

(iii) when −π2 < λi < 0, Gi(t, s) =
sinωit · sinωi(1− s)

ωi sinωi
, 0 ≤ t ≤ s ≤ 1

sinωis · sinωi(1− t)

ωi sinωi
, 0 ≤ s ≤ t ≤ 1.

Lemma 3. Gi(t, s), i ∈ {1, 2, 3} has the following
properties:

(i) Gi(t, s) > 0, ∀t, s ∈ (0, 1);

(ii) Gi(t, s) ≤ Ci ·Gi(s, s), ∀t, s ∈ [0, 1];

(iii) Gi(t, s) ≥ δiGi(t, t)Gi(s, s),∀t, s ∈ [0, 1],

where Ci = 1, δi =
ωi

sinhωi
, if λi > 0; Ci = 1, δi = 1,

if λi = 0; Ci =
1

sinωi
, δi = ωi sinωi, if −π2 < λi <

0.

For h ∈ Y, let us consider the following linear
boundary value problem:

−u′′ + λiu = h(t), u(0) = u(1) = 0. (4)

Then the solution of (4) can be expressed as

u(t) =

∫ 1

0

Gi(t, s)h(s) ds, i ∈ {1, 2}. (5)

We now define a mapping Ti : C[0, 1] → C[0, 1]
by

(Tih)(t) =

∫ 1

0

Gi(t, s)h(s) ds, i ∈ {1, 2}. (6)

Using Lemma 3 we have

|(Tih)(t)| =
∣∣∣∣∫ 1

0

Gi(t, s)h(s) ds

∣∣∣∣
≤ Ci∥h∥0

∫ 1

0

Gi(s, s) ds ≤ CiDi∥h∥0 = Mi∥h∥0,

where Mi = CiDi, Di =

∫ 1

0

Gi(s, s) ds. Thus

∥Tih∥0 ≤ Mi∥h∥0, and therefore

∥Ti∥ ≤ Mi, i ∈ {1, 2}. (7)

Lemma 4. ([12]) Let E be a real Banach space and
let P ⊂ E be a cone in E. Assume that Ω1, Ω2 are
open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2, and let
Q : P ∩

(
Ω2 \ Ω1

)
→ P be a completely continuous

operator such that either

(i) ∥Qu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Qu∥ ≥ ∥u∥,
u ∈ P ∩ ∂Ω2; or

(ii) ∥Qu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Qu∥ ≤ ∥u∥,
u ∈ P ∩ ∂Ω2.

Then, Q has a fixed point in P ∩
(
Ω2\Ω1

)
.
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Lemma 5. Let fn : (0, 1) → R be a sequence of a
continuously differentiable functions. If

i) lim
n→∞

fn(x) = f(x) on (0, 1);

ii) lim
n→∞

f ′
n(x) = p(x), where the convergence is

uniformly on (0, 1),

then, f is continuously differentiable on (0, 1), and for
all x ∈ (0, 1) one has

lim
n→∞

f ′
n(x) = f ′(x).

For h ∈ Y, consider the following linear boundary
value problem:

{
u(4) + bu′′ − cu = h(t), 0 < t < 1

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(8)

where b, c satisfy the assumption

π4 − bπ2 − c > 0 (9)

and let Γ = π4 − bπ2 − c. The inequality (9) follows
immediately from the fact that Γ = π4− bπ2− c is the
first eigenvalue of the problem u(4) + bu′′ − cu = λu,
u(0) = u(1) = u′′(0) = u′′(1) = 0 and ϕ1(t) =
sinπt is the first eigenfunction, i.e. Γ > 0.

Let us consider the polynomial P (λ) = λ2+bλ−c,
where b < 2π2, c ≥ 0. It is easy to see that P has two
real roots λ1, λ2 = −b±

√
b2+4c
2 , with λ1 ≥ 0 ≥ λ2 >

−π2. In this case, (8) satisfies the following decompo-
sition form:

u(4) + bu′′ − cu (10)

=

(
− d2

dt2
+ λ1

)(
− d2

dt2
+ λ2

)
u, 0 < t < 1.

It is obvious that b = −λ1 − λ2 < 2π2, c =
−λ1λ2 ≥ 0.

Now, since

u(4) + bu′′ − cu

=

(
− d2

dt2
+ λ1

)(
− d2

dt2
+ λ2

)
u

=

(
− d2

dt2
+ λ2

)(
− d2

dt2
+ λ1

)
u = h(t),

the solution of the boundary value problem (8) can be
expressed by

u(t) =

∫ 1

0

∫ 1

0

G1(t, v)G2(v, s)h(s) dsdv, t ∈ [0, 1].

(11)

Thus, for every given h ∈ Y, the boundary value
problem (8) has a unique solution u ∈ C4(0, 1) given
by (11).

We now define a mapping T : C[0, 1] → C[0, 1] by

(Th)(t) = (T2T1h)(t) =∫ 1

0

∫ 1

0

G1(t, v)G2(v, s)h(s) ds dv, t ∈ [0, 1].

(12)

From (5) and (6) one can obtain the following re-
sult.

Lemma 6. ([2]) The operator

T : C[0, 1] → (X, ∥ · ∥λ1)

is linear completely continuous, and ∥T∥ ≤ D2.

Throughout this article we denote by Th = u the
unique solution of the linear boundary value problem
(8).

The boundary value problem

−φ′′ = µu, φ(0) = φ(1) = 0,

can be solved by using the Green’s function, namely,

φ(t) = µ

∫ 1

0

K(t, s)u(s) ds, 0 < t < 1. (13)

Thus, inserting (13) into the first equation of (3),
we have

u(4) +B(t)u′′ −A(t)u

= µu(t)

∫ 1

0

K(t, s)u(s) ds+ f(t, u, u′′)

u(0) = u(1) = u′′(0) = u′′(1) = 0.

(14)

Now we consider the existence of a positive solu-
tion of (14). The function u ∈ C4(0, 1) ∩ C2[0, 1] is
a positive solution of (14), if u ≥ 0, t ∈ [0, 1], and
u ̸= 0.

Let us consider the following linear boundary value
problem:


u(4) + bu′′ − cu

= µu(t)

∫ 1

0

K(t, s)u(s) ds+ f(t, u, u′′)

u(0) = u(1) = u′′(0) = u′′(1) = 0.

(15)

Then, the solution of (15) can be expressed as

u(t) = µ

∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)u(s)∫ 1

0

K(s, v)u(v) dv ds dτ

+

∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s) f(s, u(s), u
′′(s)) ds dτ

and its second-order derivative can be expressed by
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u′′(t) = λ2u(t)− µ

∫ 1

0

G1(t, s)u(s)∫ 1

0

K(s, v)u(v) dv ds

−
∫ 1

0

G1(t, s) f(s, u(s), u
′′(s)) ds.

Let us set the cone in C2[0, 1]

P2 =
{
u ∈ C2[0, 1] : u(0) = u(1) = 0,

u ≥ 0, u′′ ≤ 0 on [0, 1]}

and

P = P2 ∩
{
u ∈ C2[0, 1] : u(t) ≥ σ1∥u∥0,

−u′′(t) ≥ σ2∥u′′∥0, t ∈
[
1

4
,
3

4

] }
,

where

σ1 =
δ1
C1

(1− L) min
t∈[ 14 ,

3
4 ]
G1(t, t),

σ2 =
δ1

CmC1
min

t∈[ 14 ,
3
4 ]
G1(t, t), and

Cm = max

{
1

1− L
,

1

1− L1

}
.

It is easy to check that P is a cone in C2[0, 1] as
well.

For R > 0, write

BR = {u ∈ C2[0, 1] : ∥u∥2 < R}.

Consider the following boundary value problem
(see [2]):

u(4) + bu′′ − cu = − (A(t)− b)u′′

+(B(t)− c)u+ h(t)

u(0) = u(1) = u′′(0) = u′′(1) = 0.

(16)

For any u ∈ X, let

Gu = − (A(t)− b)u′′ + (B(t)− c)u.

The operator G : X → Y is linear. By Lemmas 2
and 3, ∀u ∈ X, t ∈ [0, 1], we have

|(Gu)(t)| ≤ [B(t) +A(t)− (b+ c)] ∥u∥2

≤ K∥u∥2 ≤ K∥u∥λ2
,

where K = max
t∈[0,1]

[B(t) +A(t)− (b+ c)] . Hence

∥Gu∥0 ≤ K∥u∥λ2 , and so ∥G∥ ≤ K. Also u ∈
C2[0, 1] ∩ C4(0, 1) is a solution of (16) iff u ∈ X
satisfies u = T (Gu+ h), i.e.

u ∈ X, (I − TG)u = Th. (17)

The operator I−TG maps X into X. From ∥T∥ ≤
D2 together with ∥G∥ ≤ K and condition L :=
D2K < 1, and applying the operator spectral theo-
rem, we find that (I−TG)−1 exists and it is bounded.

Let H = (I − TG)−1T. Then (17) is equivalent to
u = Hh. By the Neumann expansion formula, H can
be expressed by

H = (I + TG+ . . .+ (TG)n + . . . )T

= T + (TG)T + . . .+ (TG)nT + . . .(18)

The complete continuity of T with the continuity of
(I − TG)−1 guarantees that the operator H : Y → X
is completely continuous.

Now ∀h ∈ Y+, let u = Th, then u ∈ X ∩ Y+, and
u′′ ≤ 0. Thus we have

(Gu)(t) = − (B(t)− c)u′′ + (A(t)− b)u ≥ 0,

t ∈ [0, 1].

Hence

∀ h ∈ Y+, (GTh)(t) ≥ 0, t ∈ [0, 1] (19)

and so (TG) (Th) (t) = T (GTh) (t) ≥ 0, t ∈ [0, 1].
It is easy to see ([2]) that the following inequalities

hold, ∀h ∈ Y+

1

1− L
(Th)(t) ≥ (Hh)(t) ≥ (Th)(t), t ∈ [0, 1],

and
∥Hh∥0 ≤ 1

1− L
∥Th∥0.

If we now introduce the following notation

V1(t) =

(
− d2

dt2
+ λ2

)
u,

then, from (16), using (10), we have(
− d2

dt2
+ λ1

)
V1 = Gu+ h(t) (20)

V1(0) = 0, V1(1) = 0.

So, the following boundary value problem{
−u′′(t) + λ2u(t) = V1(t),

u(0) = u(1) = 0

can be solved by

u(t) = (T2V1)(t) =

∫ 1

0

G2(τ, s)V1(s) ds. (21)

Moreover, from (20) using (21) we obtain(
− d2

dt2
+ λ1

)
V1 = GT2V1 + h(t) (22)
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V1(0) = 0, V1(1) = 0. (23)

From equation (22), we have

V1(t) = T1

(
GT2V1 + h(t)

)
.

On the other hand, V1 ∈ C[0, 1] ∩ C2(0, 1)
is a solution of (22-23) iff V1(t) satisfies V1 =
T1 (GT2V1 + h) , i.e.

(I − T1GT2)V1 = T1h. (24)

From ∥T1∥ ≤ M1, ∥T2∥ ≤ M2 together with
∥G∥ ≤ K and condition M1M2K < 1, applying the
operator spectra theorem, we have that (I−T1GT2)

−1

exists and it is bounded. Let L1 = M1M2K.
Let H1 = (I − T1GT2)

−1T1. Then, (24) is equiv-
alent to V1 = H1h. By the Neumann expansion for-
mula, H1 can be expressed by

H1 = (I + T1GT2 + (T1GT2)
2

+ . . .+ (T1GT2)
n
+ . . . )T1

= T1 + (T1GT2)T1 + (T1GT2)
2T1

+ . . .+ (T1GT2)
nT1 + . . .

(25)

The complete continuity of T1 with the continuity of
(I − T1GT2)

−1 yields that the operator H1 : Y →
C2[0, 1] is completely continuous.

By (25) we have that ∀ h ∈ Y+,

(H1h)(t) = (T1h)(t) +
(
(T1GT2)T1h

)
(t)

+
(
(T1GT2)

2T1h
)
(t)

+ . . .+
(
(T1GT2)

nT1h
)
(t) + . . .

≥ (T1h)(t), t ∈ [0, 1],

and so H1 : Y+ → Y+ ∩ C2[0, 1].
On the other hand, we have that ∀ h ∈ Y+,

(H1h)(t) ≤ (Th)(t) + ∥T1GT2∥(T1h)(t)

+ ∥T1GT2)∥2(T1h)(t) + . . .+

∥T1GT2∥n(T1h)(t) + . . .

≤ (1 + L1 + . . .+ Ln
1 + . . . )

(T1h)(t) =
1

1− L1
(T1h)(t).

So, the following inequalities hold:

(H1h)(t) ≤
1

1− L1
∥T1h∥0, t ∈ [0, 1]

and
∥H1h∥0 ≤ 1

1− L1
∥T1h∥0.

Hence

1

1− L1
(T1h)(t) ≥ (H1h)(t) ≥ (T1h)(t), t ∈ [0, 1].

For any u ∈ Y+ ∩ C2[0, 1], let

Fu(t) = µu(t)

∫ 1

0

K(t, s)u(s) ds+ f(t, u, u′′).

(26)
From (A1), we have that F : Y+ ∩ C2[0, 1] → Y+

is continuous. It is easy to see that u ∈ C2[0, 1] ∩
C4(0, 1) being a positive solution of (14) is equivalent
to u ∈ Y+ being a nonzero solution of

u = HFu. (27)

Let Q = HF. Obviously, Q : Y+ ∩ C2[0, 1] →
Y+∩C2[0, 1] is completely continuous. We next show
that the operator Q has a nonzero fixed point in Y+ ∩
C2[0, 1].

From (12) and (26) we also have

TFu(t) = T2T1

(
µu(s)

∫ 1

0

K(s, v)u(v) dv

f(s, u(s), u′′(s)))

= µ

∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)u(s)∫ 1

0

K(s, v)u(v) dv ds dτ

+

∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s) f(s, u(s), u
′′(s)) ds dτ

(28)

and hence

(TFu)′′(t) = λ2TFu(t)− µ

∫ 1

0

G1(t, s)u(s)∫ 1

0

K(s, v)u(v) dv ds dτ−∫ 1

0

G1(t, s) f(s, u(s), u
′′(s)) ds dτ.

So, from (18) and (28), we have

(Qu)(t) = (HFu)(t) = (TFu)(t) +
(
(TG)TFu

)
(t)

+ . . .+
(
(TG)nTFu

)
(t) + . . .

(29)

Lemma 7. Let u ∈ P. Then, the following relations
hold:

(a) (Qu)(t) ≥ δ1
C1

(1 − L) · G1(t, t)∥Qu∥0, for t ∈
[0, 1];

(b) −(Qu)′′(t) ≥ δ1
CmC1

·G1(t, t)∥(Qu)′′∥0, for t ∈
[0, 1].

Proof. From Lemma 3 it is easy to see that

Qu(t) ≤ 1

1− L
(TFu)(t) ≤ C1

1− L

∫ 1

0∫ 1

0

G1(τ, τ)G2(τ, s)Fu(s) dsdτ, t ∈ [0, 1]
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and so

∥Qu∥0 ≤ C1

1− L

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)Fu(s) dsdτ.

Hence

Qu(t) ≥ (TFu)(t) ≥ δ1G1(t, t)

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)Fu(s) dsdτn

≥ δ1(1− L)G1(t, t)

C1
≥ ∥Qu∥0.

(30)

Similarly, it is easy to see that

−(Qu)′′(t) ≥ δ1

ĈC1

G1(t, t)∥(Qu)′′∥0. (31)

Indeed, using (18) H can be expressed by

Hh = (I + TG+ (TG)2

+ . . .+ (TG)n + . . . )Th

= Th+ TGTh+ (TG)2Th

+ . . .+ (TG)nTh+ . . .

= T (Ih+GTh+ (GT )2h

+ . . .+ (GT )nh+ . . . ).

(32)

If we differentiate the right hand side of (18) with
the help of (32), ∀h ∈ Y+ we have the following:

T ′(Ih+GTh+ (GT )2h

+ . . .+ (GT )nh+ . . . )

= T ′h+ T ′G(Th+ (TG)Th

+ . . .+ (TG)nTh+ . . . )

≤ T ′h+ T ′G(Th+ ∥TG∥Th
+ . . .+ ∥TG∥nTh+ . . . )

≤ T ′h+ T ′G(1 + L+ . . .+ Ln + . . . )Th

= T ′h+
1

1− L
(T ′G)Th.

Then the series

T ′h+ T ′GTh+ T ′G(TG)Th+ . . .+

T ′G(TG)nTh+ . . .

uniformly converges on (0, 1).
Using Lemma 5, if we differentiate both sides of

(18), we get

(Hh)′ = T ′h+ T ′GTh+ T ′G(TG)Th

+ . . .+ T ′G(TG)nTh+ . . .
(33)

Similarly, using Lemma 5 it is also true that

(Hh)′′ = T ′′h+ T ′′GTh+ T ′′G(TG)Th

+ . . .+ T ′′G(TG)nTh+ . . . ,
(34)

because the series

T ′′h+ T ′′GTh+ T ′′G(TG)Th+ . . .+

T ′′G(TG)nTh+ . . .

also uniformly converges on (0, 1). If we differentiate
both sides of (33), we find equation (34).

Finally, we differentiate twice both sides of equa-
tion (12) with respect to t in order to find T ′′

(Th)′′(t) = λ2(Th)(t)−
∫ 1

0

G1(t, s)h(s) ds

= λ2(Th)(t)− (T1h)(t), t ∈ [0, 1].

(35)

Using (34) and (35) we obtain

(Hh)′′(t) = λ2(Hh)(t)− (H1h)(t)

with Hh and H1h from (18) and (25), respectively.
Let h = F (u), then we obtain

(Qu)′′(t) = (HF (u))
′′
(t) = λ2(HF (u))(t)−(H1F (u))(t).

The proof of (31) is similar to the proof of (30).
Similarly,

−(Qu)′′(t) = (−λ2)(HFu)(t) + (H1Fu)(t)

≤ (−λ2)
1

1− L
(TFu)(t) +

1

1− L1
(T1Fu)(t)

=
(−λ2)

1− L

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)Fu(s) dsdτ

+
1

1− L1

∫ 1

0

G1(t, s)Fu(s) ds

≤ C1Cm

(
−λ2

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)

Fu(s) dsdτ +

∫ 1

0

G1(s, s)Fu(s) ds

)
, t ∈ [0, 1]

and so

∥(Qu)′′∥0 ≤ C1Cm

(
−λ2

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)

Fu(s) dsdτ +

∫ 1

0

G1(s, s)Fu(s) ds

)
.

Hence

−(Qu)′′(t) ≥ (−λ2)(TFu)(t) + (T1Fu)(t)

≥ δ1G1(t, t)

(
(−λ2)

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)

Fu(s) dsdτ +

∫ 1

0

G1(s, s)Fu(s) ds

)
≥ δ1G1(t, t)

C1Cm
∥(Qu)′′∥0.

Throughout this paper, we assume additionally that
the function f(t, u, v) satisfies

(H1) f(t, u, v) ≤ f1(t)f2(|u|+ |v|),
t ∈ (0, 1), u ∈ R+, v ∈ R−,
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where f1 ∈ C ([0, 1],R+) , f2 ∈ C (R+,R+) .

Let us introduce the following notations

D1 =

∫ 1

0

∫ 1

0

G1(τ, τ)K(τ, s) ds dτ,

D2 =

∫ 1

0

G1(s, s) f1(s) ds,

D3 =

∫ 1

0

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)K(s, v) dvdsdτ,

D4 =

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)f1(s) dsdτ,

D5 =

∫ 3
4

1
4

∫ 3
4

1
4

G2(
1

2
, τ)G1(τ, s) dsdτ.

Lemma 8. Suppose that (H1) applies. Then, for all
u ∈ C2[0, 1] such that u(0) = u(1) = 0, u ≥ 0, and
u′′ ≤ 0, the following hold

(TFu)(t) ≤ µD1∥u∥20 +D2 sup
s∈(0,1)

f2(|u(s)|

+ |u′′(s)|), t ∈ (0, 1),

and

−(TFu)′′(t) ≤ µD1∥u∥20 +D2 sup
s∈(0,1)

f2(|u(s)|

+ |u′′(s)|), t ∈ (0, 1).

Proof. It is easy to see that D3 ≤ D1 and D4 ≤ D2.

By Lemma 1 and (H1) we have

TFu(t) ≤ µ

∫ 1

0

∫ 1

0

∫ 1

0

K(τ, τ)

K(τ, s)K(s, v) dv ds dτ∥u∥20

+

∫ 1

0

∫ 1

0

K(τ, τ)K(τ, s) f1(s) ds dτ

sup
s∈(0,1)

f2(|u(s)|+ |u′′(s)|)

≤ µD1∥u∥20 +D2 sup
s∈(0,1)

f2 (|u(s)|+ |u′′(s)|) ,

and similarly we also have

− (TFu)′′(t) ≤ µ

∫ 1

0

∫ 1

0

K(τ, τ)K(τ, s) ds dτ∥u∥20

+

∫ 1

0

K(s, s) f1(s) ds dτ sup
s∈(0,1)

f2(|u(s)|+ |u′′(s)|)

≤ µD1∥u∥20 +D2 sup
s∈(0,1)

f2(|u(s)|+ |u′′(s)|).

Lemma 9. Q(P ) ⊂ P and Q : P → P is completely
continuous.

Proof. Let u ∈ P, then we define the mapping Q :
P → C2[0, 1] by (29). Then, for any u ∈ P, it is clear
that

(TFu)′′(t) = λ2TFu(t)− µ

∫ 1

0

G1(t, s)u(s)∫ 1

0

K(s, v)u(v) dv ds dτ

−
∫ 1

0

G1(t, s) f(s, u(s), u
′′(s)) ds dτ ≤ 0,

(36)

because λ2 ≤ 0. So, using (34) and (36), we have

(Qu)′′(t) = (HF (u))
′′
(t)

= λ2(HF (u))(t)− (H1F (u))(t) ≤ 0.

By Lemma 7,

(Qu)(t) ≥ δ1
C1

(1− L)G1(t, t)∥Qu∥0

≥ σ1∥Qu∥0, t ∈
[
1

4
,
3

4

]
and

−(Qu)′′(t) ≥ δ1
CmC1

G1(t, t)∥Qu′′∥0

≥ σ2∥Qu∥0, t ∈
[
1

4
,
3

4

]
.

Hence Q(P ) ⊂ P.
Let V ⊂ P be a bounded set. Then there exists

d > 0, such that sup{∥u∥2 : u ∈ V } = d.
First we prove Q(V ) is bounded. Since ∥u∥2 =

max {∥u∥0, ∥u′′∥0} , we have |u(t)| + |u′′(t)| ≤
∥u∥0 + ∥u′′∥0 ≤ 2d, for all t ∈ [0, 1]. Let Md =
sup{f2(w) : w ∈ [0, 2d]}. Now, from Lemma 3 we
have for any u ∈ V and t ∈ [0, 1] that

|TFu(t)| =
∣∣∣∣µ ∫ 1

0

∫ 1

0

K(t, τ)K(τ, s)u(s)∫ 1

0

K(s, v)u(v) dv ds dτ +

∫ 1

0

∫ 1

0

K(t, τ)

K(τ, s) f(s, u(s), u′′(s)) ds dτ |
≤ µD1∥u∥20 +D2 sup

s∈(0,1)

f2(|u(s)|

+ |u′′(s)|) ≤ µD1d
2 +MdD2.

(37)

Using (37), we obtain (TFu)∥0 ≤ µD1d
2+MdD2

and

∥HFu∥0 ≤ 1

1− L
∥TFu∥0 ≤ 1

1− L
(µD1d

2+MdD2).

We have a similar type of inequality for |(Tu)′′(t)|
and ∥ (HFu)

′′ ∥0.
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Therefore Q(V ) is bounded.
Next we prove that Q(V ) is equicontinuous. Now

from Lemma 4 we have for any u ∈ V and any t1, t2 ∈
[0, 1] that

|(TFu)(t1)− (TFu)(t2)| ≤ µ

∫ 1

0

∫ 1

0

|K(t1, τ)

−K(t2, τ)|K(τ, s)u(s)

∫ 1

0

K(s, v)u(v) dv ds dτ

+

∫ 1

0

∫ 1

0

|K(t1, τ)−K(t2, τ)|K(τ, s)

f(s, u(s), u′′(s)) ds dτ

≤ µ

∫ 1

0

∫ 1

0

∫ 1

0

|K(t1, τ)−K(t2, τ)|

K(τ, s)K(s, v) dv ds dτ∥u∥20

+

∫ 1

0

∫ 1

0

|K(t1, τ)−K(t2, τ)|K(τ, s) f1(s) f2(|u(s)|

+ |u′′(s)|) ds dτ

≤ µ|t1 − t2|
∫ 1

0

∫ 1

0

K(s, s)K(s, v) dv ds ∥u∥20

+Md|t1 − t2|
∫ 1

0

K(s, s) f1(s) ds

≤ (µD1d
2 +MdD3)|t1 − t2|.

(38)

Using (18), we have

|(Hh)(t1)− (Hh)(t2)| =| (Th)(t1)− (Th)(t2)

+ (TGTh)(t1)− (TGTh)(t2) +
(
(TG)2Th

)
(t1)

−
(
(TG)2Th

)
(t2) + . . .+

(
(TG)nTh

)
(t1)

−
(
(TG)nTh

)
(t2) + . . . |≤ |(Th)(t1)

− (Th)(t2)|+ |(TGTh)(t1)− (TGTh)(t2)|
+

∣∣((TG)2Th
)
(t1)−

(
(TG)2Th

)
(t2)

∣∣+ . . .+∣∣((TG)nTh
)
(t1)−

(
(TG)nTh

)
(t2)

∣∣+ . . . =

|(Th)(t1)− (Th)(t2)|+ |(TG)(Th(t1)− Th(t2))|∣∣(TG)2(Th(t1)− Th(t2))
∣∣+ . . .+

∣∣(TG)
n (

Th(t1)

−Th(t2)
)∣∣+ . . . ≤ |(Th)(t1)− (Th)(t2)|

+ ∥TG∥ · |Th(t1)− Th(t2)|+ ∥TG∥2 · |Th(t1)
− Th(t2)|+ . . .+ ∥TG∥n · |Th(t1)
− Th(t2)|+ . . . ≤ (1 + L+ . . .+ Ln + . . . )|(Th)(t1)

− (Th)(t2)| =
1

1− L
|(Th)(t1)− (Th)(t2)|.

Let h(t) = Fu(t) = µu(t)
∫ 1

0
K(t, s)u(s) ds +

f(t, u, u′′). So, by (38), we have

|(Qu)(t1)− (Qu)(t2)| = |(HFu)(t1)− (HFu)(t2)|

≤ 1

1− L
|(TFu)(t1)− (TFu)(t2)|

≤ 1

1− L
(µD1d

2 +MdD3)|t1 − t2|.

We have a similar type of inequality for
|(Qu)′′(t1)− (Qu)′′(t2)|.

Therefore Q(V ) is equicontinuous.
Next we prove that T is continuous. Suppose

un, u ∈ P and ∥un − u∥2 → 0 which implies
that un(t) → u(t), u′′

n(t) → u′′(t) uniformly on
[0, 1]. Similarly, for f(t, u, v) = g(t) · h(t, u, v),
h(t, un(t), u

′′
n(t)) → h(t, u(t), u′′(t)) uniformly on

[0, 1]. The assertion follows from the estimate

|(Hh2)(t)− (Hh1)(t)| =| (Th2)(t)− (Th1)(t)

+ (TGTh2)(t)− (TGTh1)(t) +
(
(TG)2Thn

2

)
(t)

−
(
(TG)2Th1

)
(t) + . . .+

(
(TG)nTh2

)
(t)

−
(
(TG)nTh1

)
(t) + . . . |≤ |(Th2)(t)

− (Th1)(t)|+ |(TGTh2)(t)− (TGTh1)(t)|
+

∣∣((TG)2Th2

)
(t)−

(
(TG)2Th1

)
(t)

∣∣
+ . . .+

∣∣((TG)nTh2

)
(t)−

(
(TG)nTh1

)
(t)

∣∣+ . . .

= |(Th2) (t)− (Th1) (t)|+ |(TG)(Th2(t)− Th1(t))|

+
∣∣∣(TG)

2
(Th2(t)− Th1(t))

∣∣∣
+ . . .+ |(TG)

n
(Th2(t)− Th1(t))|+ . . .

≤ |(Th2) (t)− (Th1) (t)|+ ∥TG∥ · |Th2(t)

− Th1(t)|+ ∥TG∥2 · |Th2(t)− Th1(t)|+ . . .+

∥TG∥n · |Th2(t)− Th1(t)|+ . . .

≤ (1 + L+ . . .+ Ln + . . . ) · |Th2(t)− Th1(t)|

=
1

1− L
· |Th2(t)− Th1(t)|.

(39)

Let h1(t) = Fun(t) and h2(t) = Fu(t). So, by
(39), we have

|(Qun)(t)− (Qu)(t)| = |(HFun)(t)− (HFu)(t)|

≤ 1

1− L
|TFun(t)− TFu(t)|

≤ µ
1

1− L

∫ 1

0

∫ 1

0

K(t, τ)K(τ, s) |un(s)− u(s)|∫ 1

0

K(s, v) |un(v)− u(v)| dv ds dτ

+
1

1− L

∫ 1

0

∫ 1

0

K(t, τ)K(τ, s) |g(s)| |h(s, un(s),

u′′
n(s))− h(t, u(s), u′′(s))|ds dτ,

and the similar estimate for |(Qun)
′′(t) − (Qu)′′(t)|

by an application of the standard theorem on the con-
vergence of integrals. Obviously, Q : P → P is con-
tinuous.

The Ascoli-Arzela theorem guarantees that Q :
P → P is completely continuous.

Lemma 10. If u(0) = u(1) = 0 and u ∈ C2[0, 1],
then ∥u∥0 ≤ ∥u′′∥0, and so, ∥u∥2 = ∥u′′∥0.

Proof. Since u(0) = u(1), there exists α ∈ (0, 1)

such that u′(α) = 0, and so u′(t) =
∫ t

α
u′′(s) ds,
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t ∈ [0, 1]. Hence |u′(t)| ≤
∫ t

α
|u′′(s)| ds ≤∫ 1

0
|u′′(s)| ds ≤ ∥u′′∥0, t ∈ [0, 1]. Thus ∥u′∥0 ≤

∥u′′∥0. Since u(0) = 0, we have u(t) =
∫ t

0
u′(s) ds,

t ∈ [0, 1], and so |u(t)| ≤
∫ 1

0
|u′(s)| ds ≤ ∥u′∥0.

Thus ∥u∥0 ≤ ∥u′∥0 ≤ ∥u′′∥0. Since ∥u∥2 =
max {∥u∥0, ∥u′′∥0} and ∥u∥0 ≤ ∥u′′∥0, we obtain
that ∥u∥2 = ∥u′′∥0.

Corollary 1. Let r > 0 and let u ∈ ∂Br ∩ P. Then
∥u∥2 = ∥u′′∥0 = r.

Let us denote by µ̄ =
1

4CmC1(1 + |λ2|)D1
.

3 Main results

In the following we prove two results, in Theorem
1 and Theorem 2, that assert the existence of positive
solutions.

Theorem 1. Suppose that (H1) applies.. Assume that
the following condition holds

(H2)

lim sup
w→0+

f2(w)

w
= 0,

and

lim inf
|v|→∞

min
t∈[ 14 ,

3
4 ]

inf
u∈[0,+∞)

f(t, u, v)

|v|
= ∞.

If µ ∈ (0, µ̄), then problem BVP (3) has at least
one positive solution.

Proof. Let us choose 0 < Ĉ1 ≤ µ̄
2 . Then by (H2),

there exists 0 < r < 1
2 such that

f2(|u|+ |v|) ≤ Ĉ1(|u|+ |v|), 0 ≤ |u|+ |v| ≤ 2r.

Let u ∈ ∂Br ∩ P, then by Corollary 1, ∥u∥2 =
∥u′′∥0 = r and u(0) = u(1) = 0. Also since
∥u∥0 ≤ ∥u′′∥0 we have |u(t)| ≤ ∥u∥0 ≤ r, |u′′(t)| ≤
∥u′′∥0 = r, ∀t ∈ [0, 1], therefore 0 ≤ |u(t)| +
|u′′(t)| ≤ 2r, ∀t ∈ [0, 1].

Thus, by Lemma 2, (H1) and (H2), we have

(Qu)(t) ≤ 1

1− L
(Tu)(t)

≤ 1

1− L

{
µC1

∫ 1

0

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)

K(s, v) dvdsdτ∥u∥20 + C1

∫ 1

0

∫ 1

0

G1(τ, τ)

G2(τ, s)f1(s)f2(|u|+ |u′′|) dsdτ}

≤ C1

1− L

{
µD3∥u∥20 + Ĉ1D4(∥u∥0 + ∥u′′∥0)

}
≤ µD3

C1

1− L
∥u∥20 + 2Ĉ1D4∥u′′∥0

C1

1− L

≤ µD1
C1

1− L
∥u∥20 + 2Ĉ1D2∥u′′∥0

C1

1− L

≤ µD1CmC1∥u∥20 + 2Ĉ1D2∥u′′∥0CmC1

≤ 1

4
∥u∥20 +

1

4
∥u∥2 ≤ 1

4
∥u∥22 +

1

4
∥u∥2

≤ 1

2
∥u∥2, ∀u ∈ ∂Br ∩ P, t ∈ [0, 1].

Consequently,

∥Qu∥0 ≤ 1

2
∥u∥2, ∀u ∈ ∂Br ∩ P. (40)

Similarly we also have

−(Qu)′′(t) = (−λ2)(HFu)(t) + (H1Fu)(t),

hence

|(Qu)′′(t)| = |λ2||(HFu)(t)|+ |(H1Fu)(t)|

≤ |λ2|
1

1− L
|(TFu)(t)|+ 1

1− L1
|(T1Fu)(t)|

≤ Cm{µC1|λ2|
∫ 1

0

∫ 1

0

∫ 1

0

G1(τ, τ)

G2(τ, s)K(s, v) dvdsdτ∥u∥20

+ C1|λ2|
∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)f1(s)f2(|u|+ |u′′|) dsdτ

+ µC1

∫ 1

0

∫ 1

0

G1(τ, τ)K(τ, v) dvdτ∥u∥20

+ C1

∫ 1

0

G1(τ, τ)f1(τ)f2(|u|+ |u′′|) dτ}

≤ C1Cm{|λ2|µD3∥u∥20 + Ĉ1D4|λ2|(∥u∥0 + ∥u′′∥0)

+ µD1∥u∥20 + Ĉ1D2(∥u∥0 + ∥u′′∥0)}

≤ C1Cm{|λ2|µD1∥u∥20 + Ĉ1D2|λ2|∥u′′∥0
+ µD1∥u∥20 + Ĉ1D22∥u′′∥0}

≤ C1Cm(1 + |λ2|)D1µ∥u∥20 + C1Cm(1 + |λ2|)D2Ĉ12∥u′′∥0

≤ 1

4
∥u∥20 +

1

4
∥u′′∥0 =

1

2
∥u∥2, ∀u ∈ ∂Br ∩ P, t ∈ [0, 1].

Consequently,

∥(Qu)′′∥0 ≤ 1

2
∥u∥2, ∀u ∈ ∂Br ∩ P. (41)

Using (40) and (41) we have

∥Qu∥2 ≤ ∥Qu∥0+∥(Qu)′′∥0 ≤ ∥u∥2, ∀u ∈ ∂Br∩P.
(42)

Let us choose 0 < Ĉ2 ≤ 1
σD5

. Then, by condition
(H2), there exists R1 > 0 such that

f(t, u, v) ≥ Ĉ2|v|, ∀u ∈ R+, ∀|v| ≥ R1, t ∈
[
1

4
,
3

4

]
.

Let R > max{R1

σ , r}. Let u ∈ ∂BR ∩ P, i.e.
∥u′′∥0 = R. Thus we have

min
t∈[ 14 ,

3
4 ]
|u′′(t)| ≥ σ∥u′′∥0 = σR > R1, u ∈ ∂BR∩P.
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Then, by Lemma 1, (H1) and (H2), we have

(Qu)

(
1

2

)
≥ (Tu)

(
1

2

)
≥ µ

∫ 3
4

1
4

∫ 3
4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)
G1(τ, s)u(s)K(s, v)u(v) dvdsdτ

+

∫ 3
4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)
G1(τ, s)f(s, u(s), u

′′(s)) dsdτ

≥ Ĉ2

∫ 3
4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)
G1(τ, s)|u′′(s)|dsdτ

≥ Ĉ2σ

∫ 3
4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)
G1(τ, s) dsdτ∥u′′∥0 ≥ ∥u′′∥0

so

(Qu)

(
1

2

)
≥ ∥u′′∥0 = ∥u∥2, ∀u ∈ ∂BR ∩ P.

Consequently,

∥u∥2 ≤ ∥Qu∥0 ≤ ∥Qu∥2, ∀u ∈ ∂BR ∩ P.

Then, due to Lemma 4, by (42) and the above in-
equality we see that the problem (3) has at least one
positive solution.

Theorem 2. Suppose that (H1) applies. Assume that
the following conditions hold

(H3)

lim inf
|u|+|v|→0+

min
t∈[ 14 ,

3
4 ]

f(t, u, v)

|u|+ |v|
= ∞,

and

lim inf
|v|→∞

min
t∈[ 14 ,

3
4 ]

inf
u∈[0,+∞)

f(t, u, v)

|v|
= ∞;

(H4) there exists 0 < ϱ < 1
2 such that

sup
w∈[0,1]

f2(w) ≤
ϱ (1− L)

4D2C1(1 + |λ2|)
. (43)

If µ ∈ (0, µ), then problem BVP(3) has at least two
positive solutions.

We note for the argument below that D4 ≤ D2,
ϱ(1−L)

4D2C1(1+|λ2|) ≤
ϱ

4D2C1
, and µ = 1

4D1C1(1+|λ2|)Cm
≤

1
4D1C1Cm

.

Proof. By condition (H4) there exists 0 < ϱ < 1
2

such that (43) is fulfilled. Let u ∈ ∂Bϱ ∩ P, by
Corollary 1, ∥u′′∥0 = ϱ, u(0) = u(1) = 0. Also,
since ∥u∥0 ≤ ∥u′′∥0 we have u(t) ≤ ∥u∥0 ≤ ϱ,
|u′′(t)| ≤ ∥u′′∥0 = ϱ, ∀t ∈ [0, 1], therefore 0 ≤

|u(t)| + |u′′(t)| < 1, ∀t ∈ [0, 1]. By condition (H4),
∀u ∈ ∂Bϱ ∩ P and t ∈ [0, 1], we have

(Qu)(t) ≤ 1

1− L
(Tu)(t)

≤ 1

1− L
µC1

∫ 1

0

∫ 1

0

∫ 1

0

G1(τ, τ)

G2(τ, s)K(s, v) dvdsdτ∥u∥20 +
1

1− L
C1∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)f1(s)f2(|u|+ |u′′|) dsdτ

≤ 1

1− L
C1µD3∥u∥20 +

ϱ

4D2C1
C1

∫ 1

0

∫ 1

0

G1(τ, τ)

G2(τ, s)f1(s) ds ≤
1

1− L
C1µD1∥u∥20

+
ϱ

4D2

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)f1(s) ds ≤ CmC1µD1∥u∥20

+
ϱ

4D2

∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)f1(s) ds

≤ 1

4
∥u∥20 +

1

4
ϱ =

1

4
∥u∥20 +

1

4
∥u′′∥0 =

1

4
∥u∥20 +

1

4
∥u∥2

≤ 1

4
∥u∥22 +

1

4
∥u∥2 ≤ 1

2
∥u∥2, ∀u ∈ ∂Bϱ ∩ P, t ∈ [0, 1].

Consequently, we get

∥Qu∥0 ≤ 1

2
∥u∥2, ∀u ∈ ∂Bϱ ∩ P. (44)

Similarly we also have

−(Qu)′′(t) = (−λ2)(HFu)(t) + (H1Fu)(t),

hence

|(Qu)′′(t)| = |λ2||(HFu)(t)|+ |(H1Fu)(t)|

≤ |λ2|
1

1− L
|(TFu)(t)|+ 1

1− L1
|(T1Fu)(t)|

≤ Cm{µC1|λ2|
∫ 1

0

∫ 1

0

∫ 1

0

G1(τ, τ)

G2(τ, s)K(s, v) dvdsdτ∥u∥20

+ |λ2|C1

∫ 1

0

∫ 1

0

G1(τ, τ)

G2(τ, s)f1(s)f2(|u|+ |u′′|) dsdτ

+ µC1

∫ 1

0

∫ 1

0

G1(τ, τ)K(τ, v) dvdτ∥u∥20

+ C1

∫ 1

0

G1(τ, τ)f1(τ)f2(|u|+ |u′′|) dτ}

≤ Cm{µC1|λ2|D3∥u∥20

+ |λ2|C1
ϱ(1− L)

4D2

1

C1(1 + |λ2|)∫ 1

0

∫ 1

0

G1(τ, τ)G2(τ, s)f1(s) dsdτ
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+ µC1D1∥u∥20 + C1
ϱ(1− L)

4D2

1

C1(1 + |λ2|)∫ 1

0

G1(τ, τ)f1(τ) dτ}

≤ CmµC1D1(1 + |λ2|)∥u∥20

+
1

4
(1 + |λ2|)

1

(1 + |λ2|)
CmC1ϱ(1− L)

≤ CmµC1D1(1 + |λ2|)∥u∥20

+
1

4
(1 + |λ2|)

1

(1 + |λ2|)
C1ϱ

≤ 1

4
∥u∥20 +

1

4
ϱ =

1

4
∥u∥20 +

1

4
∥u∥2

≤ 1

4
∥u∥22 +

1

4
∥u∥2 ≤ 1

2
∥u∥2,

∀u ∈ ∂Bϱ ∩ P, t ∈ [0, 1].

Consequently,

∥(Qu)′′∥0 ≤ 1

2
∥u∥2, ∀u ∈ ∂Bρ ∩ P. (45)

Using (44) and (45) we have

∥Qu∥2 ≤ ∥Qu∥0+∥
(
Qu

)′′∥0 ≤ ∥u∥2, ∀u ∈ ∂Bρ∩P.
(46)

Let us choose 0 < c3 ≤ 1
σD5

. Then, by condition
(H3), there exists 0 < r < ϱ such that

f(t, u, v) ≥ c3(|u|+ |v|), ∀u ∈ [0, r]

∀ |v| ∈ [0, r], t ∈
[
1

4
,
3

4

]
.

Let u ∈ ∂Br ∩ P, by Corollary 1, ∥u′′∥0 = r,
u(0) = u(1) = 0. Also, since ∥u∥0 ≤ ∥u′′∥0 we have

0 ≤ u(t) ≤ ∥u∥0 ≤ r,

0 ≤ |u′′(t)| ≤ ∥u′′∥0 = ∥u∥2 = r,

∀ u ∈ ∂Br ∩ P.

Also we have

min
t∈[ 14 ,

3
4 ]
|u′′(t)| ≥ σ∥u′′∥0 = σr, ∀u ∈ ∂Br ∩ P.

The estimate for (Tu)
(
1
2

)
is similar to that in the proof

of Theorem 1, i.e. from Lemma 1 and (H1) we have

(Qu)

(
1

2

)
≥ (Tu)

(
1

2

)
c3

∫ 3
4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)
≥ G1(τ, s)(|u(s)|+ |u′′(s)|) dsdτ ≥ c3σ∫ 3

4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)
G1(τ, s) dsdτ∥u′′∥0 ≥ ∥u′′∥0.

Thus

(Qu)

(
1

2

)
≥ ∥u′′∥0 = ∥u∥2, ∀u ∈ ∂Br ∩ P.

Consequently,

∥u∥2 ≤ ∥Qu∥0 ≤ ∥Qu∥2, ∀u ∈ ∂Br ∩ P.

Finally we show that for sufficiently large R > 1
2 ,

it holds

∥Qu∥2 ≥ ∥u∥2, ∀u ∈ ∂BR ∩ P.

To see this we choose 0 < c2 ≤ 1
σD5

. Due to con-
dition (H4), there exists R1 > 0 such that

f(t, u, v) ≥ c2|v|, ∀u ∈ R+, ∀|v| ≥ R1, t ∈
[
1

4
,
3

4

]
.

Let R > max{R1

σ , 1
2}. Let u ∈ ∂BR∩P, by Corol-

lary 1, ∥u′′∥0 = R. Thus we have

min
t∈[ 14 ,

3
4 ]
|u′′| ≥ σ∥u′′∥0 = σR > R1, ∀u ∈ ∂BR ∩ P.

Then, by Lemma 1, (H1) and (H4), we have

(Qu)

(
1

2

)
≥ (Tu)

(
1

2

)
≥ c2

∫ 3
4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)

G1(τ, s)|u′′(s)|dsdτ ≥ c2σ

∫ 3
4

1
4

∫ 3
4

1
4

G2

(
1

2
, τ

)
G1(τ, s) dsdτ∥u′′∥0 ≥ ∥u′′∥0

so

(Qu)

(
1

2

)
≥ ∥u′′∥0 = ∥u∥2, ∀u ∈ ∂BR ∩ P.

Consequently,

∥u∥2 ≤ ∥Qu∥0 ≤ ∥Qu∥2, ∀u ∈ ∂BR ∩ P.

Then by Lemma 4, we know that Q has at least two
fixed points in

(
BR\Bρ

)
∩ P and

(
Bρ\Br

)
∩ P, i.e.

problem (3) has at least two positive solutions.
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